Search results for "Electronic detector readout concepts"

showing 7 items of 7 documents

Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC

2019

Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 ×  50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…

Nuclear and High Energy PhysicsParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsPhysics::Instrumentation and DetectorscostsRadiationElectronic detector readout concepts01 natural sciences7. Clean energy030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinesemiconductor detector: pixelElectronic detector readout conceptCMOS sensorselectrode: designParticle tracking detectors0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionRadiation hardeningspatial resolutionradiation: damagePhysicsCMOS sensorsemiconductor detector: technologyMonolithic active pixel sensorPixelirradiation010308 nuclear & particles physicsbusiness.industrytracking detector: upgradeDetectorCMOS sensorParticle tracking detectorMonolithic active pixel sensorsUpgradeCERN LHC CollCMOSefficiencyOptoelectronicsbusinessperformanceRadiation-hard detectors
researchProduct

Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip

2021

Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…

Nuclear and High Energy PhysicsWire bondingParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsHardware_PERFORMANCEANDRELIABILITY01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineModule0103 physical sciencesHardware_INTEGRATEDCIRCUITSWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Silicon pixel detectorsInstrumentationPhysicsInterconnectionPixel010308 nuclear & particles physicsbusiness.industryChipInterconnectionCMOSMonolithic pixel detectorsMALTAOptoelectronicsWafer dicingUltrasonic sensorbusinessHL-LHC
researchProduct

Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk

2019

The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. For the de- velopment of depleted CMOS sensors for ATLAS we combined small electrodes with minimal capacitance and advanced processing for fully depleted active sensor volume to achieve radiation hard CMOS sensors in line with ATLAS ITk specifications. Based on initial studies on the prototype sensor “TowerJazz Investigator” we have now developed, produced and tested a first full-size depleted CMOS sensor based on the 180nm TowerJazz imag- ing process, the so-called “MALTA” sensor. The sensor combines special low-noise…

CMOS sensorLarge Hadron Colliderbusiness.industryComputer sciencePhysics::Instrumentation and DetectorsDetectorElectronic detector readout concepts (solid-state) ; Front-end electronics for detector readout ; Particle tracking detectors ; Radiation-hard detectorsChipCapacitancemedicine.anatomical_structureUpgradeCMOSAtlas (anatomy)medicineComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSDetectors and Experimental TechniquesbusinessComputer hardware
researchProduct

The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment

2015

Mu3e is a novel experiment searching for charged lepton flavor violation in the rare decay μ → eee. In order to reduce background by up to 16 orders of magnitude, decay vertex position, decay time and particle momenta have to be measured precisely. A pixel tracker based on 50 μm thin high voltage monolithic active pixel sensors (HV-MAPS) in a magnetic field will deliver precise vertex and momentum information. Test beam results like an excellent efficiency of >99.5% and a time resolution of better than 16.6 ns obtained with the MuPix HV-MAPS chip developed for the Mu3e pixel tracker are presented.

PhysicsParticle physicsCMOS sensorElectronic detector readout concepts (solid-state)PixelPhysics::Instrumentation and Detectorsbusiness.industryHigh voltageChipElectronic detector readout concepts (solid-state); Particle tracking detectors (solidstate detectors)Magnetic fieldVertex (geometry)OpticsHigh Energy Physics::Experimentddc:610Electric potentialDetectors and Experimental TechniquesParticle tracking detectors (solidstate detectors)ddc:620businessInstrumentationParticle Physics - ExperimentMathematical PhysicsEngineering & allied operationsLepton
researchProduct

MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade

2019

The ATLAS collaboration is currently investigating CMOS monolithic pixel sensors for the outermost layer of the upgrade of its Inner Tracker (ITk). For this application, two large scale prototypes featuring small collection electrode have been produced in a radiation-hard process modification of a standard 0.18 μm CMOS imaging technology: the MALTA, with a novel asynchronous readout, and the TJ MONOPIX, based on the well established "column-drain" architecture. The MALTA chip is the first full-scale prototype suitable for the development of a monolithic module for the ITk. It features a fast and low-power front-end, an architecture designed to cope with an hit-rate up to 2 MHz/mm2 without c…

PhysicsMasking (art)Pixel010308 nuclear & particles physicsChip01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineUpgrademedicine.anatomical_structureCMOSAtlas (anatomy)Asynchronous communication0103 physical sciencesparticle tracking detectors ; radiation-hard detectors ; electronic detector readout concepts ; front-end electronics for detector readoutmedicineElectronic engineeringDetectors and Experimental TechniquesInstrumentationMathematical PhysicsDegradation (telecommunications)Journal of Instrumentation
researchProduct

A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

2015

The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applicati…

business.product_categoryLarge Hadron Collider010308 nuclear & particles physicsbusiness.industryFirmwareComputer scienceElectronic detector readout concepts (gas liquid)Data acquisition conceptscomputer.software_genre01 natural sciencesARM architectureData acquisition0103 physical sciencesNetwork switchSystem on a chipModular electronics010306 general physicsbusinessField-programmable gate arrayInstrumentationHost (network)computerParticle Physics - ExperimentMathematical PhysicsComputer hardwareJournal of Instrumentation
researchProduct

Latest Developments and Results of Radiation Tolerance CMOS Sensors with Small Collection Electrodes

2020

The development of radiation hard Depleted Monolithic Active Pixel Sensors (DMAPS) targets the replacement of hybrid pixel detectors to meet radiation hardness requirements of at least 1.5e16 1 MeV neq/cm2 for the HL-LHC and beyond. DMAPS were designed and tested in the TJ180 nm TowerJazz CMOS imaging technology with small electrodes pixel designs. This technology reduces costs and provides granularity of 36.4x36.4 um2 with low power operation (1 uW/pixel), low noise of ENC < 20 e-, a small collection electrode (3 um) and fast signal response within 25 ns bunch crossing. This contribution will present the latest developments after the MALTA and Mini-MALTA sensors. It will illustrate the imp…

noiseParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsMaterials science010308 nuclear & particles physicsbusiness.industryintegrated circuitelectrode01 natural sciencesCMOSRadiation toleranceefficiency0103 physical sciencesElectrodeHardware_INTEGRATEDCIRCUITSelectronics: readoutOptoelectronicssemiconductor detector[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniquescontrol system010306 general physicsbusiness
researchProduct